Cognitive Models of Prediction as Decision Aids

نویسندگان

  • Christian Lebiere
  • Don Morrison
  • Tarek Abdelzaher
  • Shaohan Hu
چکیده

We consider the use of cognitive models as both models of human cognitive function and human-compatible decision aids. The domain of application is prediction based on partial information in the context of emergency events where the availability and timeliness of information is limited. The cognitive model is based on the memory retrieval processes of the ACT-R cognitive architecture, most specifically its underpinnings in the rational analysis of cognition. The model is shown to capture well the temporal and spatial characteristics of the data. Finally, we discuss potential issues in the application of cognitive models as decision aids and recommender systems, in particular the ability to introspect in the workings of the model to select data most suitable for the human decision making process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of the main caving span in longwall mining using fuzzy MCDM technique and statistical method

Immediate roof caving in longwall mining is a complex dynamic process, and it is the core of numerous issues and challenges in this method. Hence, a reliable prediction of the strata behavior and its caving potential is imperative in the planning stage of a longwall project. The span of the main caving is the quantitative criterion that represents cavability. In this paper, two approaches are p...

متن کامل

Prediction for Decision-Making under Uncertainty

A primary use for mathematical models, in fields such as environmental management, economics and engineering, is prediction. Prediction can aid choice between decisions by assessing their consequences, or between models by comparing their prediction performance. Choice between models raises fewer questions of how to use predictions, and this paper concentrates instead on prediction for decision...

متن کامل

Comparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models

Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...

متن کامل

Early Prediction of Gestational Diabetes Using ‎Decision Tree and Artificial Neural Network Algorithms

Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...

متن کامل

Comparative study of predictive ability of AIDS incidence in HIV positive people using Markov model according to two criteria, WHO and CDC in CD4 cell categorization

Background: The Multi state Markov models have extensively application with categorization of laboratory marker of CD4 cells for evaluation of HIV disease progression. These models with different states result in different effects of covariates and prediction of HIV disease trend. The main purpose of this study was comparison of four and five states models with the three- state in order to sele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016